Unit Timeline

<table>
<thead>
<tr>
<th>Lessons</th>
<th>Class Time</th>
<th>Lesson Objective(s)</th>
<th>Lesson Prep</th>
<th>Key Vocabulary</th>
</tr>
</thead>
</table>
| **1** | **Introduction to Weathering** | 25 min | - Students demonstrate their prior knowledge on weathering and erosion using the “Mountain Age” probe.
- Students will use reasoning based on prior knowledge or experience with rocks to determine the age of a mountain. | Make one copy per student of “Mountain Age” Probe | n/a |
| **2** | **Mechanical weathering – Salt and Chalk Lab** | 30 min | - Students will create a simple model of mechanical weathering to demonstrate the abrasion process on rock.
- Students will build group process skills and participate in constructive science discourse.
- Students will observe and then reflect on this lab, and be able to express their thinking in a Claim/Evidence/Reasoning format as an exit ticket. | Set materials out on a tray for each work group the following:
1. Fill each zipper lock bag with about ½ cup of salt
2. Put in one piece of colored sidewalk chalk into the bag with salt
3. Timer
4. Make one copy per student of Salt & Chalk Mechanical Weathering worksheet | Abrade/abrasion
- Claim
- Evidence
- Reasoning
- Sediments
- Weathering |
Weathering Instructional Case: A series of student-centered science lessons

<table>
<thead>
<tr>
<th>Lessons</th>
<th>Class Time</th>
<th>Lesson Objective(s)</th>
<th>Lesson Prep</th>
<th>Key Vocabulary</th>
</tr>
</thead>
</table>
| 3 | 135 min | - Identify five types of mechanical weathering, and five types of chemical weathering
- Identify and recognize the important factors affecting rates of weathering
- Complete two graphic organizers to reflect new knowledge
- Create a “mind-map” to organize weathering concepts | - Print one mechanical weathering graphic organizer per student
- Print one chemical weathering graphic organizer per student
- Print one weathering mind map per student
- Print off cards using a color printer, then laminate. Prepare one set for every 2-3 students, if possible | - Abrasion
- Acid rain
- Carbon dioxide
- Chemical Weathering
- Dissolve
- Freezing
- Mechanical Weathering
- Organisms
- Oxygen
- Particles
- Pressure
- Thawing
- Weathering |
| 4 | 45 min | - To engage students by giving them the freedom to create different tests
- To collect data using scientific instruments
- To use evidence collected to explain how temperature and other factors affect the rate of dissolution. | - Make copies of the Effervescent Antacid Weathering
- Prepare trays/bins of following materials for each group
1. 3 packets of Alka-Seltzer (total of 6 tablets)
2. clear plastic cup
3. thermometer
4. timer
5. waste bowl
6. disposable coffee cups (for hot water) | - Dissolve
- Prediction
- Procedure
- Weathering |
Weathering Instructional Case: A series of student-centered science lessons

<table>
<thead>
<tr>
<th>Lessons</th>
<th>Class Time</th>
<th>Lesson Objective(s)</th>
<th>Lesson Prep</th>
<th>Key Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Weathering Competition</td>
<td>90 min</td>
<td>• Identify factors that affect rates of chemical and mechanical weathering</td>
<td>Technology (if possible)</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Predict which factors will affect the rate of weathering in a real rock sample and explain how each selected factor will affect rock</td>
<td>• Set up document camera PowerPoint slide to project worksheet instructions and graph of class results.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a class bar graph to display group data</td>
<td>Day 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Analyze class graph</td>
<td>• Label plastic jars with period and group number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the C-E-R format to explain their thinking behind their hypothesis and results</td>
<td>• Make trays of materials for each group that include the following for each group: 1 plastic, wide mouth, screw top jar, Electronic scale with 0.1g accuracy, Timer, and a Funnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Identify an easily accessible location set up a variable station with premeasured plastic portion cups of each of the solid variables (sand, gravel, salt), and 8 oz cups of each of the liquid variables (tap water, seltzer water, vinegar).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Create and label trays by period for students to set their bottles on after experimenting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Day 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Prepare trays of materials for each group including: Jars (with rocks and variables), funnel, plastic bowl, plastic spoon, scale, calculator, and paper towels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Designate a central location for the large waste container for students to pour their liquid/solid mixtures (so they do not go in the sink)</td>
<td></td>
</tr>
</tbody>
</table>